LITHOPROBE-southern Vancouver Island: Cenozoic subduction complex imaged by deep seismic reflections•

نویسنده

  • E. R. KANASEWICH
چکیده

The LITHOPROBE seismic reflection project on Vancouver Island was designed to study the large-scale structure of several accreted terranes exposed on the island and to determine the geometry and structural characteristics of the subducting Juan de Fuca plate. In this paper, we interpret two LITHOPROBE profiles from southernmost Vancouver Island that were shot across three important terrane-bounding faults-Leech River, San Juan, and Survey Mountain-to determine their subsurface geometry and relationship to deeper structures associated with modem subduction. The structure beneath the island can be divided into an upper crustal region, consisting of several accreted terranes, and a deeper region that represents a landward extension of the modem offshore subduction complex. In the upper region, the Survey Mountain and Leech River faults are imaged as northeast-dipping thrusts that separate Wrangellia, a large Mesozoic-Paleo­ zoic terrane, from two smaller accreted terranes: the Leech River schist, Mesozoic rocks that were metamorphosed in the Late Eocene; and the Metchosin Formation, a Lower Eocene basalt and gabbro unit. The Leech River fault, which was clearly imaged on both profiles, dips 35 -45 ° northeast and extends to about 10 km depth. The Survey Mountain fault lies parallel to and above the Leech River fault and extends to similar depths. The San Juan fault, the western continuation of the Survey Mountain fault, was not imaged, although indirect evidence suggests that it also is a thrust fault. These faults accommodated the Late Eocene amalgamation of the Leech River and Metchosin terr.mes along the southern perimeter of W rangellia. There­ after, these terranes acted as a relatively coherent lid for a younger subduction complex that has formed during the modem (40 Ma to present) convergent regime. Within this subduction complex, the LITHOPROBE profiles show three prominent bands of differing reflectivity that dip gently northeast. These bands represent regionally extensive layers lying beneath the lid of older accreted terranes. We inter­ pret them as having formed by underplating of oceanic materials beneath the leading edge of an overriding continental place. The upper reflective layer can be projected updip to the south, where it is exposed in the Olympic Mountains as the Core rocks, an uplifted Cenozoic subduction complex composed dominantly of accreted marine sedimentary rocks. A middle zone of low reflectivity is not exposed at the surface, but results from an adjacent refraction survey indicate it is probably composed of rela­ tively high velocity materials ( -7.7 km/s). We consider two possibilities for the origin of this zone: (1) a detached slab of oceanic lithosphere accreted during an episodic tectonic event or (2) an imbricated package of mafic rocks derived by continu­ ous accretion from the top of the subducting oceanic crust. The lower reflective layer is similar in reflection character to the upper layer and, therefore, is also interpreted as consisting dominantly of accreted marine sedimentary rocks. It represents the active zone of decoupling between the overriding and underthrusting plates and, thus, delimits present accretionary processes occurring directly above the descending Juan de Fuca plate. These results provide the first direct evidence for the process of subduction underplating or subcretion and illustrate a process that is probably important in the evolution and growth of continents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LITHOPROBE-southern Vancouver Island: Cenozoic subduction complex imaged by deep seismic reflections:• Discussion

Clowes et al. presented an informative article on the results of seismic reflection experiments conducted along four lines for LITHOPROBE on southern Vancouver Island. The various reflections indicated in the profiles, which are distributed as deep as the Mohorovicic discontinuity, formed the basis for proposing various scenarios for the tectonic development of the crust. Two of these hypothese...

متن کامل

Time scales and heterogeneous structure in geodynamic earth models

Computer models of mantle convection constrained by the history of Cenozoic and Mesozoic plate motions explain some deep-mantle structural heterogeneity imaged by seismic tomography, especially those related to subduction. They also reveal a 150-million-year time scale for generating thermal heterogeneity in the mantle, comparable to the record of plate motion reconstructions, so that the probl...

متن کامل

Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia

The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced s...

متن کامل

Morphology of the Explorer–Juan de Fuca slab edge in northern Cascadia: Imaging plate capture at a ridge-trench-transform triple junction

The Explorer plate is a young oceanic microplate that accommodates relative motion between the Pacifi c, Juan de Fuca, and North America plates near northern Vancouver Island, Canada. The northern limit of Explorer plate–Juan de Fuca subduction and the fate of the slab in northern Cascadia are poorly understood. We use passive teleseismic recordings from an array of POLARIS broadband seismic st...

متن کامل

Energy-Based Seismic Risk Evaluation of Tall Reinforced Concrete Building in Vancouver, BC, Canada, under Mw9 Megathrust Subduction Earthquakes and Aftershocks

Citation: Tesfamariam S and Goda K (2017) Energy-Based Seismic Risk Evaluation of Tall Reinforced Concrete Building in Vancouver, BC, Canada, under Mw9 Megathrust Subduction Earthquakes and Aftershocks. Front. Built Environ. 3:29. doi: 10.3389/fbuil.2017.00029 Energy-Based Seismic Risk Evaluation of Tall Reinforced Concrete Building in Vancouver, BC, Canada, under Mw9 Megathrust Subduction Eart...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003